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A geometrical-topological description of crystal structure as a three-dimen-

sional graph with coloured nodes, weighted and coloured edges is used to

generate a hierarchical sequence of the structure representations. The solid

angles of Voronoi–Dirichlet polyhedra of atoms are used as the edge weights

and the nodes and edges are coloured according to chemical reasons. Two

operations are defined to derive the representations: contracting an atom to

other atoms keeping the local connectivity, and removing an atom together with

all its bonds. The atoms of the crystal structure are called origin, removed,

contracted or target according to their roles in the operations. Each structure

representation is described as a labelled quotient graph and determined by (i)

colours of the graph nodes and edges, (ii) some level for edge weights, and (iii)

an arrangement of atoms according to their roles. The computer enumeration

and topological comparative analysis of all representations for crystal structures

of any composition and complexity are implemented into the TOPOS program

package. The advantages of the method are shown by the analysis of typical

inorganic compounds and a molecular packing.

1. Introduction

The problem of appropriate classification of crystal structures

is one of the principal problems of crystal chemistry. Starting

from the first structure determination, crystal chemists tried to

find the most valid characteristics that could form an unam-

biguous system of classification taxons for crystal patterns.

Owing to the nature of typical crystallographic data, such

characteristics naturally fall into two categories: geometrical

and topological. The geometrical structure parameters (unit-

cell dimensions, space group, atomic coordinates, interatomic

distances, coordination polyhedra etc.) concern the Euclidean

metric of crystal space and are obtained directly from

experiment. At the same time, they do not contain direct

information on interatomic bonding. One can derive such

‘chemical’ information from geometrical features, taking into

account the nature of interacting atoms, for instance, by

comparing sums of atomic radii with interatomic distances. As

a result, some pattern of connectivity can be found that

reflects topological features of the structure and is usually

represented by a three-dimensional graph. Despite the fact

that topological characteristics are closer to the problems of

crystal chemistry than geometrical ones, they were rarely

considered until the late 1970s. For a long time, coordination

number (CN) was the only topological parameter to be

exploited in crystallochemical analysis. Thanks to the

summary reviews of Wells (1977, 1979), the problem of

detailed description of the three-dimensional structure graph

came to be considered as an important problem of crystal

chemistry. This approach was further developed by O’Keeffe

and co-workers (e.g. O’Keeffe & Hyde, 1985, 1996; O’Keeffe

et al., 2000; Delgado-Friedrichs et al., 2005), who systematically

used new topological structural descriptors (Schläfli and

vertex symbols, coordination sequences, tilings) to find and

characterize the topologies of ‘ideal’ nets in crystal structures.

At present, topological description has become a routine

procedure in structure investigations. The theoretical basis of

the graph representation has also been intensively developed

in the last two decades (Chung et al., 1984; Klee, 1987, 2004;

Eon, 1998; Winkler et al., 2001); the authors proposed to

reduce the three-dimensional graph to a finite labelled

quotient graph suitable for computer storage (Blatov, 2000;

Delgado-Friedrichs & O’Keeffe, 2003). An intermediate

approach that considers both geometrical and topological

structure features was first developed for zeolites (Meier,

1968). It introduces the notion of a secondary building unit

(SBU) as a stable atomic group with a certain topology and

well defined geometry. Being an extension of the geometrical

notion of a coordination polyhedron (primary building unit),

the SBU takes into account topological features of a finite

region in the three-dimensional graph; its generalized form,

suprapolyhedral invariant, can serve as a geometrical repre-

sentation of coordination sequence (Ilyushin & Blatov, 2002).

Crystallochemical classification schemes were developed

along with systems of structure descriptors. The oldest

geometrical schemes use mainly geometrical structure char-

acteristics and are based on the notion of structure type as a

primary classification taxon. Although this notion has many



variants, it first considers spatial symmetry and Wyckoff

sequences, i.e. geometrical parameters, and then atomic

coordination as a local topological characteristic (Lima-de-

Faria et al., 1990). The structure-type schemes have been

widely applied in crystal chemistry as printed [multivolume

manuals Structure Reports (1931–1990) and Crystal Structures

(1963–1968); Parthé et al. (1993/1994)] and electronic

(Bergerhoff et al., 1999) handbooks. Since the 1920s, early

topological classification schemes were based on local char-

acteristics of the structure graph, in fact, on the first several

members of coordination sequences, although the notion

‘coordination sequence’ itself was introduced much later

by Brunner & Laves (1971). Many taxonomists from

Machatschki (1928) and Bragg (1930) to Liebau (1985) used

the notion of primary building unit to classify inorganic

compounds, mainly silicates and phosphates. In the last

20 years, the concept of the SBU [or its chemically stable

analog, molecular building block, MBB (O’Keeffe et al., 2000)]

became more popular to consider various mineral species

(Ferraris et al., 1986; Hawthorne et al., 1996; Ferey, 2000) and

open-framework structures (Cheetham et al., 1999). This

tendency reflects the extension of the analysis of local struc-

ture in modern crystal chemistry. The works of Wells (1977,

1979) and O’Keeffe & Hyde (1985, 1996) were the first large-

scale topological classifications of basic structure motifs

considering net topology as a whole. In the last decade, the

search for topological relations between simple or more

complicated nets has become one of the most important

problems of theoretical crystal chemistry (Schindler et al.,

1999; Vegas, 2000; Vegas & Jansen, 2002; Delgado-Friedrichs

et al., 2005; Hyde et al., 2006). At present, the topological

multilevel analysis (focused on SBU, MBB or net topology) is

one of the main crystallochemical tools used in the design of

new materials (Yaghi et al., 2003; Carlucci et al., 2003; Blatov et

al., 2004; Baburin et al., 2005; Öhrström & Larsson, 2005).

Taking into account the large variety even of simple topo-

logical motifs found in crystal structures and different

chemical ways to separate SBUs in a compound, we need a

distinct algorithmic procedure to consider a crystal structure

at all allowable levels of its organization. In previous work

(Blatov, 2000), we proposed a computer method and devel-

oped a program IsoTest to enumerate crystal structure

representations and to analyse corresponding topologies.

These tools were successfully applied to process various

classes of inorganic synthetic compounds and minerals

(Blatov, 2001; Ilyushin & Blatov, 2002; Ilyushin et al., 2004;

Blatov & Peskov, 2006). Below, we present a further devel-

opment of the method.

2. An approach to hierarchical representation of crystal
structure

Hereafter, we assume that some topology is established for the

crystal structure to be analysed. This topology can be repre-

sented by a three-dimensional graph or by the corresponding

labelled quotient graph. Thus, we consider geometrical

features of the crystal structure only when assigning topology;

the successive crystal structure analysis, classification and

comparison are exclusively based on a topological repre-

sentation that unambiguously corresponds to a graph.

Strictly speaking, any crystal structure has an infinite

number of representations because an infinite number of

topologies (nets) can be defined for an infinite (three-dimen-

sional) lattice. However, only a small (and finite) number of

them are crystallochemically significant, i.e. have crystal-

lochemical meaning. Ordinarily, such significant representa-

tions should be chemically proved, i.e. should have a topology

corresponding to a system of chemical bonds. Obviously,

several representations may be considered for a heterodesmic

compound; for instance, any organic molecular crystal may be

represented as a packing of non-bonded molecules or as a net

of molecular centroids connected by intermolecular contacts.

However, even a homodesmic compound may be considered

in different ways. For instance, the crystal structure of a binary

ionic compound AB (like NaCl) has two distinct representa-

tions: as a packing of A and B ions (with primitive cubic

topology, pcu,1 in the case of NaCl) or as a packing of larger

ions, normally anions [B], containing interstitial smaller ions

(in NaCl, Cl anions form face-centred cubic packing, fcu, with

Na cations occupying octahedral voids). Nevertheless, this list

of representations is not comprehensive. Taking into account

the important role of cation arrays in crystallization (O’Keeffe

& Hyde, 1985; Vegas, 2000; Vegas & Jansen, 2002), one can be

curious about the topology of the cation sublattice [A], which

has the same (fcu) topology in NaCl. In more complicated

structures, the number of significant representations increases.

For instance, a silicate crystal structure may be represented as

a graph of connected O atoms ignoring Si–O bonds; this

representation is significant in relation to oxygen packing.

However, in zeolites, it is important to consider the topology

of the silicate framework with O spacers, or also the sublattice

of the framework intrachannels to examine ion-exchange

properties. Therefore, to provide a comprehensive classifica-

tion and to find implicit relations between crystal structures,

we need to consider all their representations. The main

problem is to enumerate them independently of chemical and

crystallographic complexity of a substance.

Let us consider a crystal structure containing Z atoms in the

asymmetric unit; some of them may be chemically equivalent.

Our analysis will be based on the complete representation,

where all contacts between the atoms are taken into account;

some of these contacts (or even all of them, as in crystals of

noble gases) may not be chemical bonds. To determine

interatomic contacts, we use a Voronoi–Dirichlet partition of

crystal space; as has been shown (Blatov, 2004, and references

therein), Voronoi–Dirichlet polyhedra can be successfully

used for crystallochemical analysis even of complicated

chemical substances (Fig. 1). A Voronoi–Dirichlet polyhedron

is constructed for each of the Z atoms, and all faces of the

Voronoi–Dirichlet polyhedra are considered as interatomic

contacts.
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All the contacts should be classified, depending on the

peculiarities of the crystallochemical task. Using parameters

of Voronoi–Dirichlet polyhedra, one can separate strong

(valence or ionic), specific (H bond, agostic or secondary) or

van der Waals (non-valence) bonds (Blatov, 2004). In addition,

indirect interatomic contacts (O’Keeffe, 1979), whose lines do

not intersect corresponding faces of Voronoi–Dirichlet poly-

hedra, are considered as non-bonding and form no graph

edges. The strength of an atomic interaction of a given type is

assumed to be proportional to the solid angle of the corre-

sponding face (Blatov, 2004). Thus, the Voronoi–Dirichlet

partition maps onto a three-dimensional graph, whose edges

are coloured according to the type of atomic interaction, and

have weights equal to the solid angles (Fig. 1).

We assume that the complete representation contains all

information on the crystal structure topology; all significant

representations may be deduced as its subsets by the following

three-step procedure.

(i) The graph edges of the same colour are taken into

account, depending on the task conditions. Other edges are

either ignored or considered irrespective of their weights. In

most cases, the chemical interactions of only one type are of

interest; as a rule those are strong bonds. If two or more types

of bonds are to be analysed, the bonds of only one type are to

be considered at a given pass of the procedure. Then an array

of the weights (solid angles) is formed for all the edges with

the same colour. For instance, when analysing H-bonded

molecular packings, the solid angles for H bonds should be

arranged at this step; valence bonds should be treated

regardless of their weights, and all van der Waals contacts

should be forgotten.
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Figure 2
�-CaSO4 crystal structure (Lager et al., 1984, space group P6222):
(a) complete representation ({Ca, S, O},;,;,;), and its subrepresentations
(b) ({Ca, S},;, {O}, {S}) with origin Ca and S atoms, contracted O atoms
and target S atoms (the sma topology); (c) ({Ca, O}, {S},;,;) with origin
Ca and O atoms, and removed S atoms; (d) ({Ca}, {S}, {O}, {Ca}) with
origin and target Ca atoms, removed S atoms and contracted O atoms
(the qtz topology).

Figure 1
The Voronoi–Dirichlet polyhedron and environment of an O atom in the
crystal structure of ice VIII (Besson et al., 1994). Valence, H-bond and
non-valence interatomic contacts are coloured red, green and black,
respectively. Indirect contacts, forming no graph edges, are dashed.
Interatomic distances (Å) and solid angles (in percentage of 4� sr) are
given for each non-equivalent graph edge.



(ii) The entire array of solid angles is divided into several

groups by a clustering algorithm. We have used a simple

approach where two solid angles belong to the same group if

their difference is smaller than a given value [a typical solid

angle estimation error, 1.5% of 4� sr, should normally be

applied (Blatov, 2004)]. Thus, n distinct coordination spheres

are separated in the atomic environment. Then different

topologies are generated by successively rejecting the farthest

coordination sphere. As a result, n � 1 additional repre-

sentations of the crystal structure are produced from the

complete one. It is important that no ‘best’ representations are

chosen at this step but all levels of interatomic interaction are

clearly distinguished for further analysis, depending on the

matter in hand.

(iii) Each of the n representations is used to generate a set

of subrepresentations according to an improved scheme

initially proposed by Blatov (2000). Every subrepresentation

is unambiguously determined by an arrangement of the set {Z}

of all Z atoms into the four subsets: origin {OA}, removed

{RA}, contracted {CA} and target {TA} atoms. Two operations

are defined on the subsets to derive a graph of the subrepre-

sentation from the graph of an initial ith representation:

contracting an atom to other atoms keeping the local

connectivity, when the atom is suppressed, but all graph paths

passing through it are retained (Figs. 2a, b), and removing an

atom together with all its bonds (Figs. 2c, d). The four-subset

arrangement is determined by the role of atoms in those

operations. Namely, origin atoms form a new net that char-

acterizes the subrepresentation topology; removed atoms are

eliminated from the initial net by the removing operation;

contracted atoms merge with target atoms, passing the bonds

to them.

All the sets {OA}, {RA}, {CA} and {TA} form a collection

({OA}, {RA}, {CA}, {TA}) that, together with the initial

representation, unambiguously determines the subrepre-

sentation topology (Figs. 2a–d). As a result, all crystal-struc-

ture representations are generated with the coloured edges

selected at step (i); therefore, the representations should be

called valence (H bond, van der Waals etc.) according to the

chosen bond type. If other types of atomic interactions are to

be taken into account, the procedure is repeated for each of

the found representations with another colour filter. For

instance, considering H-bonded complex groups, we may first

enumerate all representations of the complex groups

depending on the strength of intermolecular H bonds, and

then analyse all types of intramolecular valence bonding for

every H-bond representation.

With the concept of collection, the successful enumeration

of the significant subrepresentations becomes easily forma-

lizable as a computer algorithm. Firstly, any collection has a

number of properties reflecting the crystal-structure relations

that can be formulated in terms of set theory.

(i) {OA} \ {RA} = ;; {OA} \ {CA} = ;, {RA} \ {CA} = ;

because an atom cannot play more than one role in the crystal

structure.

(ii) {OA} [ {RA} [ {CA} = {Z}, i.e. every atom must have a

crystallochemical role.

(iii) {OA} 6¼ ;, other sets may be empty. This property arises

because only the origin atoms are nodes in the graph of the

crystal structure subrepresentation; other atoms determine

the graph topology. Obviously, the collection ({OA},;,;,;)

means that {OA} = {Z}; it describes the initial representation.

(iv) {TA} � {OA}, because the target atoms are always

selected from the origin atoms; unlike other origin atoms they

are the centres of complex structural groups.

(v) {TA} 6¼ ;, {CA} 6¼ ; because the target and contracted

atoms together form the structural groups.

Secondly, the collections, together with the topological

operations, map onto all the crystal structure transformations

applied in crystallochemical analysis. Namely, origin atoms

correspond to the centres of structural groups in a given

structure consideration. If a structural group has no distinct

central atom, a pseudoatom (PA) coinciding with the group’s

centroid should be added to the {Z} set; this case is typical in

the analysis of molecular packings. Removed atoms are

atoms to be ignored in the current crystal-structure repre-

sentation, like atoms of interstitial ions and molecules in

porous substances or, say, alkali metals in framework

coordination compounds. Contracted atoms, together with

target atoms, form complex structural groups but the

contracted atoms are not directly considered; they merely

provide the structure connectivity whereas the target atoms

coincide with the groups’ centroids. The difference between

origin and target atoms is that the target atoms always

correspond to polyatomic structural groups whereas the

origin atoms symbolize all structural units, both mono- and

polyatomic.

The number of subrepresentations is determined only by

the number of colours of the graph nodes (atoms) in the initial

representation. The colours distinguish topologically different

atoms in a current structure description. Atoms of the same

colour must belong to the same {Z} subset. One can consider

all the Z atoms as of different colours; this is the most common

approach. However, in most cases, it is reasonable to unite the

atoms of the same chemical element into the same colour

group to reduce the total number of subrepresentations and to

simplify topological analysis. Sometimes, chemically equiva-

lent atoms should be distinguished if they play different

crystallochemical roles. For instance, in magnetite Fe3O4, the

Fe atoms with different coordination numbers should be

distinguished in the {Z} subsets. If, say, there are two atoms of

different colours, A and B, {A,B} = {Z}, the following four

subrepresentations are possible for the initial representation

({A,B},;,;,;):

(i) ({A}, {B},;,;), i.e. the subnet of A atoms;

(ii) ({A},;, {B}, {A}), i.e. the net of A atoms with the A—B—

A bridges (B atoms are spacers);

(iii) ({B}, {A},;,;);

(iv) ({B},;, {A}, {B}).

Nets of (iii) and (iv) are obtained by interchanging A and B in

(i) and (ii).

Using the collection properties, it is easily seen that no other

subrepresentations apart from these four may be constructed.

As is shown below, some of them may have trivial topology
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(disconnected graph) or infinite-connected nodes but the

remaining subrepresentations can be crystallochemically

significant.

This approach has been implemented into the crystal-

lochemical software package TOPOS (Blatov, 2004), which is

available at http://www.topos.ssu.samara.ru. With the program

AutoCN of the package, one can classify interatomic contacts

and then can generate all crystal structure representations as

labelled quotient graphs using both solid angles and inter-

atomic distances as weights of the graph edges. Subsequent

enumeration of the subrepresentations is done with the

improved IsoTest program. Since every representation is

described as a net graph, a number of conventional topological

descriptors (Delgado-Friedrichs & O’Keeffe, 2005; Öhrström

& Larsson, 2005) may be used to characterize the graph

topology for further comparison and storage in electronic

databases. The following descriptors are applied in TOPOS:

Coordination sequence (CS) {Nk} is a set of sequential

numbers N1, N2, . . . of atoms in first, second etc. coordination

spheres of an atom in the net. The first ten coordination

spheres are usually considered at the topological classification.

The coordination number is equal to N1 and the graph node is

called N1-connected or N1-coordinated.

Extended Schläfli symbol (ES) contains a detailed descrip-

tion of all shortest circuits (closed chains of connected atoms)

for each angle at each non-equivalent atom. The total Schläfli

symbol summarizes all the Schläfli symbols for the non-

equivalent atoms with stoichiometric coefficients.

Vertex symbol (VS) gives information similar to ES but for

rings (circuits without shortcuts).

The CS + ES + VS combination allows one to distinguish

any topologically non-equivalent nets (no counterexamples

are known). If several atoms in the asymmetric unit have the

same CS, ES and VS, they are assumed to be topologically

equivalent (a topological supersymmetry exists). Thus, the net

topology is determined by a set of CS + ES + VS combinations

for all topologically non-equivalent atoms. Two nets are

assumed to be isomorphic if an isomorphism exists between

their sets of CS + ES + VS combinations. We call the corre-

sponding crystal structures isotypic (at a given representa-

tion), or belonging to the same topological type. A procedure

of automatic arrangement of all crystal-structure representa-

tions into topological types irrespective of the structure

composition and complexity is realized in the IsoTest program.

Then the topological types can be related to the archetypes

collected in the TOPOS topological databases. At present, the

databases contain more than 18000 two- and three-dimen-

sional net topologies, including information from RCSR

(http://okeeffe-ws1.la.asu.edu/RCSR/home.htm), framework

zeolites (http://www.iza-structure.org/databases/) and

EPINET (http://epinet.anu.edu.au) databases, and on sphere

packings (Koch et al., 2006, and references therein).

3. Examples of the analysis

In all the cases below, the difference level of 1.5% was used to

cluster solid angles corresponding to interatomic contacts. The

graph nodes were distinguished chemically: they had the same

colour if and only if corresponding atoms were of the same

chemical element.

3.1. Metallic and covalent bonding: a-SrSi2

Data on interatomic distances and solid angles for �-SrSi2

(Evers, 1978) within the first coordination spheres of Si and Sr

atoms (Figs. 3a, b) are given in Table 1. Obviously, three

groups of contacts can be selected both by solid angle and by

distance criteria. Three valence representations can be

produced:
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Figure 3
Voronoi–Dirichlet polyhedra and environment of (a) the Si atom and
(b) the Sr atom in the crystal structure of �-SrSi2.

Table 1
Interatomic contacts corresponding to faces of Voronoi–Dirichlet
polyhedra in the crystal structure of �-SrSi2.

Atom R (Å) � (%) Atom R (Å) � (%)

Si environment (CN = 10) Sr environment (CN = 20)

Si 2.394�3 19.58 Si 3.251�6 8.95
Sr 3.251�3 8.95 Si 3.373�2 8.66
Sr 3.373 8.66 Si 3.830�6 1.92
Sr 3.830�3 1.92 Sr 4.002�6 2.91



(i) � > 19.5%, R < 2.4 Å, with only covalent Si—Si bonds.

This net is well known in crystal chemistry: it represents the

topology srs, or 3/10/c1 sphere packing (Koch et al., 2006),

being widespread in three-dimensional nets both in inorganic

(Blatov et al., 2004) and in metal-organic frameworks (Ockwig

et al., 2005; Baburin et al., 2005). No non-trivial subrepre-

sentations are possible in this case.

(ii) � > 8.5%, R < 3.4 Å, with strong Si—Sr bonds. This

representation characterizes the �-SrSi2 structure type with

CNSi = 7 and CNSr = 8. The following subrepresentations arise

from enumerating collections:

(iia) ({Si}, {Sr},;,;) is equivalent to the representation (i);

(iib) ({Sr}, {Si},;,;) has trivial topology because the Sr

atoms do not directly connect with each other; removing the Si

links leads to a disconnected graph;

(iic) ({Si},;, {Sr}, {Si}) gives a 26-connected uninodal Si net

that describes the topology of the Si array taking into account

the Si—Sr—Si bridges.

(iid) ({Sr},;, {Si}, {Sr}) corresponds to a structure with infi-

nite polymeric ligand (Si)1 because the contracted Si atoms

form a three-dimensional net. The topology of the Sr array

cannot be described as a graph because each Sr atom is

connected with all other Sr atoms through the —(Si)n—

bridges.

(iii) The complete representation with all contacts from

Table 1, where CNSi = 10 and CNSr = 20. Because the number

of subrepresentations depends on the number of colours of

atoms only, the similar (iiia), (iiib), (iiic) and (iiid) collections

may be considered. Again, the (iiia) subrepresentation gives

the 3-connected srs Si net, but (iiib) is not trivial thanks to

weaker Sr—Sr metallic bonding, and the corresponding graph

has 6-connected nodes and the lcy topology (6/3/c1 sphere

packing). Considering the (iiia) and (iiib) subrepresentations

together, one can mention that �-SrSi2 can be represented as

an interpenetrating array of srs Si and lcy Sr nets if all the Si—

Sr contacts are omitted (Fig. 4). This seemingly sophisticated

description for this structure can be quite reasonable in more

complicated cases. In particular, according to Baburin et al.

(2005), the crystal structure of Li2Pt3B is an interpenetration

of an srs Li net and an lcy net of Pt3B structural groups. Lastly,

both (iiic) and (iiid) subrepresentations contain polymeric

ligands and are insignificant.

3.2. Ionic and covalent bonding: c-CaSO4

The crystal structure of calcium sulfate (Lager et al., 1984,

space group P6222) is chosen as a more complicated example
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Figure 4
Interpenetrating 3-connected srs (red) and 6-connected lcy (blue) nets in
the crystal structure of �-SrSi2. The smallest 10- and 3-rings are shaded in
the nets.

Table 2
Interatomic contacts with O atoms corresponding to faces of Voronoi–
Dirichlet polyhedra for Ca and S atoms in the crystal structure of
�-CaSO4.

R (Å) � (%) R (Å) � (%)

Ca environment (CN = 8) S environment (CN = 4)

2.384�4 14.49 1.477�4 24.95
2.543�4 10.51 3.827�4† 0.05

† Non-bonding contacts.

Table 3
Subrepresentations for the complete representation of the �-CaSO4

crystal structure.

No. Subrepresentation Crystallochemical description

1† ({Ca, S}, {O},;,;) Array of isolated Ca and S atoms
2 ({Ca, O}, {S},;,;) Three-dimensional Ca–O subnet
3† ({S, O}, {Ca},;,;) Isolated sulfate ions
4 ({Ca, S},;, {O}, {Ca, S}) Three-dimensional Ca–S net with O spacers
5 ({Ca, S},;, {O}, {Ca}) Three-dimensional net of [CaOn] units and

S atoms
6 ({Ca, S},;, {O}, {S}) Three-dimensional net of Ca2+ and [SO4]2�

ions
7 ({Ca, O},;, {S}, {Ca, O}) Three-dimensional Ca–O net with S spacers
8 ({Ca, O},;, {S}, {Ca}) Equivalent to No. 2‡
9 ({Ca, O},;, {S}, {O}) Equivalent to No. 7‡

10 ({S, O},;, {Ca}, {S, O}) Three-dimensional net of [SO4]2� ions with
Ca spacers

11† ({S, O},;, {Ca}, {S}) Equivalent to No. 3‡
12 ({S, O},;, {Ca}, {O}) Equivalent to No. 10‡
13† ({Ca}, {S, O},;,;) Isolated Ca2+ ions
14 ({Ca}, {S}, {O}, {Ca}) Three-dimensional net of Ca2+ ions with O

spacers
15† ({Ca}, {O}, {S}, {Ca}) Equivalent to No. 13‡
16 ({Ca},;, {S, O}, {Ca}) Three-dimensional net of Ca2+ ions with

[SO4]2� spacers
17† ({S}, {Ca, O},;,;) Isolated S atoms
18† ({S}, {Ca}, {O}, {S}) Isolated centres of SO4 ions
19† ({S}, {O}, {Ca}, {S}) Equivalent to No. 17‡
20† ({S},;, {Ca, O}, {S}) S atoms connected with (Ca, O)1 polymeric

ligands
21† ({O}, {Ca, S},;,;) Isolated O atoms
22† ({O}, {Ca}, {S}, {O}) Isolated tetrahedral [O4] groups with S

spacers
23 ({O}, {S}, {Ca}, {O}) Three-dimensional net of O atoms with Ca

spacers
24 ({O},;, {Ca, S}, {O}) Three-dimensional net of O atoms with Ca

and S spacers

† Not a three-dimensional net, or existence of polymeric ligands. ‡ Since Ca and S
atoms are not directly connected.



of a ternary compound containing rather large alkaline-earth

cations whose CNs are often a problem to be unambiguously

determined. In the case of �-CaSO4, the calcium environment

can be split into two coordination spheres, and in total there

are three distinct groups of interatomic contacts and three

valence representations (Table 2):

(i) � > 24.5%, R < 1.45 Å. This case is insignificant because

it corresponds to isolated arrays of disconnected Ca cations

and SO4 anions;

(ii) � > 14.0%, R < 2.35 Å;

(iii) � > 10.5%, R < 2.55 Å.

These last two representations are similar; they describe three-

dimensional CaSO4 nets with mainly covalent bonds within

SO4 ions and ionic contacts between Ca2+ and [SO4]2� nodes,

however the net topologies are different. Below, we analyse

in detail the complete (iii) representation. A successive

enumeration of collections constructed for {Z} = {Ca,S,O}

results in the subrepresentations given in Table 3. The

complete representation and the most significant subrepre-

sentations Nos. 6, 2 and 14 are shown in Figs. 2(a)–(d).

Close inspection of Table 3 shows that, thanks to peculi-

arities of the structure topology, at least half of the sub-

representations (11 out of 24) describe disconnected atomic

arrays and some of the remaining ones are topologically

equivalent. Only the ten subrepresentations 2, 4–7, 10, 14, 16,

23 and 24 should be tested for crystallochemical significance.

In turn, only two of them (Nos. 6 and 14) have well known

crystallochemical topology.

Subrepresentation No. 6 ({Ca,S},;, {O}, {S}) (Fig. 2b)

describes the CaSO4 crystal structure as a packing of Ca and

SO4 ions with the sma topology, known also as 6-connected

6/4/h3 sphere packing (Sowa et al., 2003). Both Ca and SO4

nodes have the same topological descriptors so they are

topologically equivalent. This description is crystal-

lochemically the most reasonable but not the only possible

one.

Subrepresentation No. 14 ({Ca}, {S}, {O}, {Ca}) (Fig. 2d)

corresponds to the subnet of Ca2+ ions connected by O

spacers; the S atoms are ignored. Although such a repre-

sentation of an inorganic salt is unusual, it allows one to keep

track of genetic relations between different net topologies.

Indeed, this subrepresentation has the topology of a

4-connected Si net in quartz (qtz, 4/6/h1 sphere packing); this

means that sma and qtz topologies could be related. Really, we

can obtain the qtz net from sma by breaking two links; this

choice is unambiguous in space symmetry P6222. In this

case, the relation is evident due to symmetry because sma
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Figure 5
(a) �-CaSO4 crystal structure representation at � > 14.0%; (b) its
subrepresentation ({Ca, S},;, {O}, {S}) with the qtz topology. The dashed
lines show the edges to be added to transform the qtz topology into the
sma topology (cf. Fig. 2b).

Figure 6
(a) Complete representation of the crystal structure of 3-amino-1H-
pyrazolo(3, 4-c)pyridazine with H bonds (dot-and-dash lines). Inter-
atomic distances N� � �H (Å) and corresponding solid angles (in
percentage of 4� sr) are given for each non-equivalent H bond. (b)
The subrepresentation ({PA},;, {Z}–{PA}, {PA}) for H-bond representa-
tion at �(N� � �H) > 17%. The two interpenetrating molecular arrays of
the lig topology are differently coloured. Some additional weak H bonds
with �(N� � �H) = 10.1% leading to the 5/4/t5 topology are shown by
dashed lines.



corresponds to the Q (quartz) lattice complex (Fischer &

Koch, 2002). Finally, the qtz topology describes also the

({Ca,S},;, {O}, {S}) subrepresentation of representation (ii)

with 4-coordinated Ca atoms (Figs. 5a, b).

3.3. Molecular packing with H bonds: 3-amino-1H-pyra-
zolo(3,4-c)pyridazine

While analysing packing of molecules, one should choose

molecular centroids (pseudoatoms, PA) as target atoms and

all the atoms of the molecules as contracted atoms. In this

case, the set {Z} should be extended with the {PA} set. A

typical collection corresponding to a molecular packing is

({PA},;, {Z}–{PA}, {PA}). Naturally, the initial representation

should include at least two clusters of interatomic contacts

corresponding to valence (intramolecular) and non-valence

(H-bonded or van der Waals) contacts. As a result, the

molecules will be contracted to their centroids and such a

subrepresentation will be described by a net of centroids

connected by intermolecular contacts.

As an example, let us consider the crystal structure of

3-amino-1H-pyrazolo(3,4-c)pyridazine (Cacciari et al., 2003).

There are three groups of H bonds distinguished by solid

angles and lengths of N� � �H contacts (Fig. 6a). Obviously, it is

not reasonable to examine different valence representations in

this case (molecules should be considered as a whole),

therefore only H-bond representations, and only their mol-

ecular packing subrepresentations ({PA},;, {Z}–{PA}, {PA}),

are studied below.

(i) �(N� � �H) > 21%, R(N� � �H) < 2.0 Å. In this case, only

the strongest H bonds are taken into account and the packing

consists of dimers (Fig. 6a).

(ii) �(N� � �H) > 17%, R(N� � �H) < 2.2 Å. The next group of

H bonds connects the dimers into two interpenetrating three-

dimensional arrays where every molecule is 3-connected (Fig.

6b). Either of the arrays has the LiGe (lig) topology that is

also known as 3/8/t1 sphere packing (Koch et al., 2006). Two

interpenetrating lig arrays were recently found in valence-

bonded metal-organic frameworks (Blatov et al., 2004).

(iii) �(N� � �H) > 10%, R(N� � �H) < 2.35 Å. Considering all

H bonds, one can unite the two 3-connected lig arrays into a

5-connected single framework of the 5/4/t5 topology (Fig. 6b).

Thus, the two sphere packings, 5/4/t5 and 3/8/t1, can be closely

related in the packings of molecules.

4. Concluding remarks

Crystallochemical description of a crystal structure tradition-

ally rests upon selecting structural groups according to

chemical reasoning. These reasons always have a local char-

acter and arise from chemists’ long experience of dealing with

finite molecular groups that are stable in gaseous or liquid

phases. So the last part of the term crystallochemical still

dominates over the first. To find crystallochemical regularities,

i.e. common properties of extended atomic arrays on a global

level of their organization, we need to search for typical infi-

nite periodic motifs. In this way, geometrical descriptors (bond

distances and angles, types of coordination polyhedra etc.),

being efficient for small molecular units, become inap-

propriate to identify rather flexible polymeric structural

groups. Thus, the topology of periodic nets is the fundamental

characteristic to identify the types of crystal structure

organization. As was stated above, the mathematical tools of

the topological approach have been highly developed during

the last few years, and now the problem is arising of system-

atically searching for typical periodic motifs. Although this

problem has been solved by analysing both natural (Wells,

1977, 1979; O’Keeffe & Hyde, 1985, 1996; Vegas, 2000; Vegas

& Jansen, 2002) and model nets (Koch et al., 2006) for the last

few decades, the results obtained embrace a small part of the

data sets accumulated in crystallographic databases world-

wide. This work pursued two main objectives to change this

situation:

(i) an algorithm and a computer program should be devel-

oped to enumerate successively all possible representations of

a crystal structure as periodic (usually three-dimensional)

array(s);

(ii) all the representations should topologically be studied

irrespective of their chemical meaning. Only in this way may

crystallochemical regularities be found that can differ from

familiar chemical regularities. The examples given above show

that typical crystal-structure topologies usually correspond to

chemically reasonable representations.

An important application of the proposed method is the

possibility to establish genetic relations between nets with

different and with the same connectivity. Thus, the net with a

higher connectivity can be transformed to a simpler net by

breaking some edges, as in the sma–qtz example. The relation

between two nets with equal coordination numbers of atoms

(for instance, between 6-connected sma and lcy nets) should

be established through an intermediate common net with

higher or lower connectivity. Systematic investigation of such

topological relationships is in progress.
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